

MODAL NOISE ANALYSIS

Head Office:

Austria Magna Powertrain Engineering Center Steyr GmbH & Co KG Steyrer Strasse 32, 4300 St.Valentin

Dr. Walter Hinterberger Structural Analysis Phone: +43 7435 501 2316 Fax: +43 7435 501 2300 walter.hinterberger@magna.com

Sales Offices:

Japan Magna International, Tokyo Noriyuki Muramatsu Phone: +81 3 3548 0310 noriyuki.muramatsu@magna.com

China

Magna Powertrain, Shanghai Aisheng Tang Phone: +86 21 6165 1662 aisheng.tang@magna.com

MNOISE basic module includes all pre- and post-processing capa-

bilities necessary for virtual acoustic evaluation of your component based on FE frequency response results. Acoustic measures of the near field are analyzed and clearly displayed. With MNOISE basic module one can detect critical areas and acoustic hotspots of the virtual component, which can be used as starting point for design improvements.

MNOISE Modules

MNOISE basic

🔒 Femfat Ni	/H 2.0 - Mo	torhochlau	1										
Ee .													
Motorhochia	s.f												
Struktur (universal file)		f:\work3/motor_smail.urw										Scan Input File	
Loadeat cumber			101		coadsets							Read Model	
			101		101 HILFSDF	UCK SCHALLAB	STR.						Start Calculation
					4012 HAUPT	AGER 1 HORIZ	ONTAL						
					4013 HAUPT 4022 HAUPT	AGER 1 VERTIK AGER 2 HORTZ	AL NITAI						
					4023 HAUPT	AGER 2 VERTIX	AL.						
					4032 HAUPT	AGER 3 HOREZ	ONTAL						
					Pross meder	WAEK 3 VENTO	~ .		_				
	emfat NVI	H - Campbel	Diagram		444	هيمة ماكمام يحام لط	ne Verstere I		-				- 0 ×
		_											
	Filename:	f:lwork3ten	cellmotor sma	al hochia	f campbell n	fc1.us						Nodes	
Einste		le transfer										14	4
Camp							obell Motor 1					49	
											60.00 JB a	3126	
Dreha	end -	eriz (Hzj						_			00.00 00A	5211	
										10.5		11216	
	720 -	1								9.5	_	24606	
	640									9.0		31131 36451	-1
										8.0		and the second	
	560	1								7.5		Pactement	
	480									6.5		regit:	
										<u>6.0</u>		dBA	
	400	1							-	5.0		values	
	320 -									4.5		absolut	-
										3.5		Grde:	_
	240	1								3.0		area	
	160 -	1								2.0		Type:	
		-		-						1.5		Campbell 2	
	80 .	-								0.5		r Diagram Settin	~
	0.	— ,								-		Title:	
	7	50 1050	1350 1	650 1	950 2250	2550 285	0 3150	3450 37	50 4050	4350		Campbell Motor	1
						Drehzah	l [1/min]					Background	Jubra V
												1	1
Ready.			_					_					
				_			_						

MNOISE gear

MNOISE gear module is a multi-body solver especially designed to solve the parametric excitation resulting from the mesh stiffness variation of spur gears.

The necessary information of the mesh stiffness can be imported directly from KISSsoft.

MNOISE gear solves the equation of motion of the spur gears and exports the run-up load tables for a subsequent FE response analysis.

The acoustic behavior of mesh excitation is especially important for the evaluation of transmission units and eDrive systems.

Gearing Data

MNOISE

Disclaimer: Engineering Center Steyr GmbH & Co KG, MNOISE - 2017

Modal Noise Analysis

Acoustic Simulation Postprocessor

mnoise.magna.com

Overview

MNOISE – A pre- and post-processing tool for acoustic simulations. MNOISE supports the engineer at the acoustic evaluation of components based on Finite Element (FE) simulations. In the pre-processing mode MNOISE automatically generates load data tables and calls the subsequent FE analysis. After finishing the FE analysis MNOISE collects the simulation results and evaluates acoustic measures in the post-processing mode. Acoustic hot-spots can be detected and critical areas can be identified for further improvement.

Purpose

The acoustic requirements of automotive components have drastically increased in importance over the recent years due to legal regulations, lightweight design and higher customer demands. To shorten design phases it is necessary to evaluate the acoustic behavior already in the concept phase and/or in very early design phases using CAE methods. Using MNOISE critical areas and acoustic hotspots can be detected on the virtual component by evaluating acoustic near field measures. Based on these results, design improvements can be done.

Method

The acoustic evaluation of the virtual component is carried out in a modal frequency response analysis based on Finite Element method. Using the frequency domain has the advantage that transient start-up effects do not interfere with the frequency response solution.

For the generation of the load data tables in frequency domain the engineer can use the pre-processing capabilities of MNOISE. Especially the interface to MSC Adams request file format for reading complex load data series simplifies the data transfer to the FE solver.

Additionally an ASCII interface allows the load data generation from arbitrary source. After finishing the FE simulations MNOISE can be used for evaluation of acoustic quantities in the near field of the analyzed component:

- Mean square of surface normal velocities (called mobility) over frequency for each surface
- Mean noise levels (near field sound pressure in dB or dB(A)) over frequency for each surface
- Acoustic power (in dB or dB(A)) over frequency for each surface
- Acoustic power or noise level distribution of frequency bands
- Campbell diagrams of acoustic power or noise levels for each surface
- Campbell diagrams of individual points (structure borne noise evaluation)

Generation of excitation

MNOISE

Transformation of excitation into frequency domain

> Solution of mechanic problem by external solver

MNOISE

Pick up of the structural vibration data and evaluation of acoustic quantities

Excitation

- Bearing forces from multi body simulation (engine run-up)
- Electromagnetic forces
- Gear forces
- Forces of the power train acting on the body (powertrain run-up)

External solver

- NASTRAN and ABAQUS
 is supported
- Solution via modal reduced frequency response analysis

Acoustic evaluation

 Transformation of normal velocity into acoustic quantities (sound pressure level, loudness, ...)

Your Benefits

- Automatic generation of load tables for Finite Element solver based on complex load histories from MBS run-up simulations
- Meshing forces of spur gear train
- Computation of acoustic parameters (surface noise level, acoustic power, mobility)
- Fourier transformation to prepare load data for the frequency response analysis
- · Evaluation of the acoustic performance of components
- Detection of critical speeds and/or resonance frequencies (order cut, speed cut, frequency band evaluation)
- Psychoacoustic measures for individual points (Loudness, Roughness, Sharpness)

Applications

MNOISE can be used in a wide range of applications. Typical applications are the acoustic evaluation of

- Combustion engines
- eDrive systems
- Gearbox acoustic and transmission acoustic
- Vehicle body NVH